10 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Убийца цивилизации: Электромагнитная бомба

Убийца цивилизации: Электромагнитная бомба

О начале новой войны вы узнаете не по испепеляющей ядерной вспышке и не по жалобным стонам умирающих от вируса Эбола или его аналогов, выведенных генетиками. Вдалеке раздастся резкий треск, и к тому моменту, как вы решите, что это был обычный раскат грома, цивилизованный мир уже развалится. Флуоресцентные светильники и телевизоры, даже выключенные, начнут зловеще мерцать, запахнет озоном из розеток и тлеющей пластмассой от искрящей электропроводки.

Ваш карманный компьютер и MP3-плеер ощутимо нагреются, поскольку их аккумуляторы будут перегружены. Ваш компьютер умрет, и все данные в нем погибнут. Потом вы заметите, что мир и звучать стал по‑другому: прекратится работа двигателей внутреннего сгорания, эта фоновая музыка цивилизации.

Двигатели, за исключением некоторых дизелей, никогда больше не заведутся. Сами вы будете целы и невредимы, но отброшены на 200 лет назад, в ту эпоху, когда слово «электричество» означало молнию, раскалывающую ночное небо. Это — не очередной гипотетический сценарий вроде «ошибки 2000 года», а реалистичная оценка ущерба, который, по мнению Пентагона, может быть причинен оружием нового поколения — электромагнитными бомбами.

Первые крупные испытания электромагнитной бомбы были намечены на 2002 год, но пока так и не состоялись. По одной из версий, испытывать бомбу будут над Ираком. В конечном итоге армия надеется, используя эту технологию, взрывать в полете артиллерийские снаряды. Военно-морской флот хочет использовать мощный микроволновой импульс электромагнитной бомбы для обезвреживания противокорабельных ракет. ВВС собираются снабдить электромагнитными бомбами свои бомбардировщики, штурмовики, крылатые ракеты и беспилотные летательные аппараты. Когда эта технология будет принята на вооружение, появится один из самых технологически сложных видов оружия, созданных военной системой Соединенных Штатов.

У истории с электромагнитной бомбой есть, однако, и другая сторона, о которой военные говорят неохотно. Хотя американский вариант этого оружия основан на самой передовой технологии, террористы могут достичь той же разрушительной силы без использования hi-tech и гораздо дешевле. По оценке PM, простейшее оружие такого типа можно создать, затратив всего долларов четыреста.

Первые изобретения и возможность их применения в современном мире

Главным требованием к конструкции современной бомбы является обеспечение формирования сферической ударной волны при взрыве. Наглядным примером является ядерный заряд, конструкция которого состояла из плутониевого шара и 32 зарядов различных форм (12 пятигранных и 20 шестигранных). Сложность в достижении необходимых параметров вызывал разрыв по времени детонации и разброса. Такое расхождение составляло миллионную долю секунды. Для компенсации по времени и запуска использовалось электронное устройство весом около 200 кг.

Одним из первых известных человечеству приспособлений, которое приводило в действие боезаряд, является генератор Сахарова. Конструкция последнего состоит из кольца и медной катушки. Без такого генератора невозможно запустить электромагнитную бомбу. Принцип действия изобретения Сахарова следующий: детонаторы, подрывающиеся синхронно, инициируют детонацию, которая направляется к оси. В то же время происходит разряд конденсатора и формируется магнитное поле во внутренней части катушки. Из-за избыточного давления ударная волна замыкала сформировавшееся поле внутри приспособления.

Так как время действия ограничено, внутри генератора образовывался ток, который прекращал процесс излучения энергии. Такая причина привела к непригодности использования изобретения Сахарова для излучения электромагнитной энергии. Несмотря на этот факт, устройство можно использовать в мирных целях – для генерации импульсных токов.

Оружие будущего – боеголовки РЭБ

Появятся ли в ВС РФ артиллерийские снаряды и ракеты с БЧ для ведения радиоэлектронной борьбы?

Современная война – царство электроники, информационных беспроводных сетей, роев умных беспилотных разведчиков и ударных БЛА. Хорошо бы уничтожать вражеские системы такого рода мощнейшими ЭМИ – электромагнитными импульсами. Но как? Ставить стационарные излучатели на передовой – сжечь свою электронику. Взрывать над позициями врага или среди роев его дронов ядерные заряды с ЭМИ? Опасно, да и не любая война должна перерастать в атомную бойню.

Возможен и другой путь: бить врага вроде бы обычными боеголовками ракет и снарядов, которые силу своих взрывов превращают в разящие электромагнитные импульсы.

«Бомба Сахарова» для радиоэлектронной борьбы

Для борьбы с роями легких дронов и беспилотными авиационными платформами созданы боеголовки с осколочными и с готовыми поражающими элементами (ГПЭ). Осколки и ГПЭ поражают технику противника, находящуюся в пределах видимости. Но это не всегда возможно сделать, особенно если БЛА «прячется» в укрытии или за ограждающими конструкциями. Зато такими средствами, которым доступны для поражения и видимые, и укрытые технические средства противника (в том числе и боеприпасы с электронными и электрическими детонаторами), выступают средства радиоэлектронной борьбы.

Радиоэлектронная борьба (РЭБ) – это совокупность согласованных мероприятий и действий по:

    радиоэлектронному поражению радиоэлектронных объектов противника (функциональное поражение, радиоэлектронное поражение, поражение самонаводящимся на излучение оружием);

информационному обеспечению (сбор, анализ и обобщение данных о радиоэлектронной обстановке, техническая разведка радиоэлектронных объектов противника, комплексный технический контроль состояния и защиты от технических средств разведки своих объектов);

радиоэлектронной защите (защита от средств электромагнитного поражения, защита от непреднамеренных помех (обеспечение электромагнитной совместимости), защита войск и объектов от технических средств разведки).

“Боеголовка для радиоэлектронной борьбы станет надежным средством поражения ЭМ-импульсами высокотехнологичного оружия противника”

С учетом состояния техники РЭБ, выпускаемой для Минобороны РФ, принято говорить об интегрированных системах РЭБ, объединяющих около 50 комплексов и средств различного назначения. («Научные принципы РЭБ», «Коммерсантъ-Наука», № 1, 2017).

Можно найти данные о технических и массогабаритных характеристиках всех видов средств РЭБ РФ и перечень компаний, их выпускающих. Но нигде не говорится об одном замечательном устройстве для радиоэлектронной борьбы – «бомбе Сахарова», преобразующей мощный постоянный ток от аккумуляторных батарей в электромагнитное излучение за счет энергии взрывчатого вещества. Пока применять это устройство в боевых условиях не позволяют вес в сотни килограммов, продолжительность подготовки к использованию, опасность применения на переднем крае из-за «дружественного огня». Кроме того, на передовую бомбу для РЭБ противника можно доставить авиацией.

РЭБ-бомба довольно эффективно преобразовывает энергию ВВ в поражающий фактор электромагнитного излучения, тем самым губительным образом воздействует на элементную базу и цепи электронных приборов и устройств. Модули РЭБ – мощные генераторы электромагнитного излучения (ЭМИ) внушительных габаритов смонтированы на различных носителях (наземных, водных, воздушных) – в ВС РФ имеются. Наведенная ими ЭДС замыкает электрические цепи, выжигает элементную базу, выводит из строя зарядные устройства, батареи, аккумуляторы и дисплеи любых гаджетов (дисплеи уж точно не защитить никакими клетками Фарадея), что делает противника глухим и слепым. Но удобным такое оружие не назовешь, поскольку есть весьма существенный недостаток: их нельзя применить на переднем крае без риска моментальной потери средств РЭБ. Да и вдали от передка, перед тем как применить генераторы ЭМИ, нужно крепко подумать: из-за активного излучения, по лучу которого наверняка прилетят в ответ боеприпасы с ГСН.

РЭБ-бомба для переднего края

Задачу подавления радиоэлектронных средств противника можно успешно решить, если рядового бойца вооружить устройством РЭБ со схожими с ручным гранатометом массой и габаритами, заряд которого можно забросить к противнику. Такой же технологичный, дешевый и надежный, как боеприпас для РПГ-7, способный генерировать широкополосный спектр ЭМИ мощностью в десятки киловатт.

Для «выжигания» элементной базы и электросхем можно создать изделие, в котором химическая энергия взрывчатки будет прямо преобразовываться в электромагнитный импульс. Надо лишь воспользоваться научными достижениями последних лет в области конструирования постоянных магнитов, суспензий и жидкостей на их основе. Обратить химэнергию детонирующего взрывчатки в мощный импульс ЭМ-излучения можно за счет создания высокоскоростного относительного движения магнитного поля постоянных магнитов и пучка заряженных частиц легко ионизирующих веществ. И что очень важно для надежности, безотказности, легкости и оперативности применения такого изделия – это отсутствие в его конструкции любых зарядных, аккумулирующих устройств для электрического тока. Именно так, как в «бомбе Сахарова».

Читать еще:  Карабин нeym sr-21: отзывы, цена, технические характеристики, обзор

Кумулятивный эффект широко используется в военном деле для придания больших скоростей поражающим элементам (ПЭ) – квазижидкой металлической струе, ударному ядру, в технике и горном деле – для разрезания тросов, стержней, дробления скальных пород, бетона. Предлагаемый способ отличен тем, что в кумулятивную полость помещаются вещества и компоненты, которым за счет кумулятивного эффекта (благодаря схлопыванию стенок кумулятивной полости и выдавливания находящегося там вещества) придается большая скорость. Именно в направлении движения групповой скорости фронта детонационных волн заряда ВВ. Скорость вещества, помещенного в кумулятивную полость в виде суспензии из неодимовых микромагнитов, магнитной жидкости МГ-131 или другой магнитной жидкости на силиконовой или иной основе, истекающего в направлении групповой скорости детонационных волн узким пучком, будет величиной такого порядка:

где Vв – скорость истекающего вещества,

Vдв – скорость фронта детонационной волны,

2α – угол вершины кумулятивной воронки.

При скорости фронта детонационной волны Vдв, равной 7–8 км/с, скорость истечения вещества Vв может достигнуть десятков километров в секунду.

Взрывные суспензии

Кумулятивный эффект можно использовать для создания потока ионизированных частиц с большой кинетической энергией и механического перемещения магнитного поля магнитной жидкости навстречу потоку заряженных частиц. Зачем? Чтобы получить мощный кратковременный импульс ЭМ-излучения широкого спектра. Забегая вперед, скажу: можно создать заряды, уничтожающие врага и мощными ЭМИ, и как обычные «разрывные» боеприпасы.

Нужное для этого устройство может состоять из двух кумулятивных полостей, в которых находятся ускоряемые вещества, установленные на расстоянии порядка длины кумулятивной струи в 10–15 см вдоль одной оси. Причем полости направлены навстречу друг другу. В одну помещается суспензия неодимовых микромагнитов или магнитная жидкость с сильной намагниченностью. Например, МГ-131 – коллоидный раствор нанометровых твердотельных ферромагнитов. В другой – легкоионизируемое вещество, такое, как оксид бария, ВаО. При одновременном подрыве зарядов навстречу друг другу устремляются магнитное поле суспензии неодимовых микромагнитов или магнитной жидкости и поток ионов и электронов, образованные вследствие термической ионизации оксида бария, с относительной скоростью более 20 км/с, что и порождает мощный электромагнитный импульс, аналогичный магнетронному излучению.

Мощность обусловлена кратковременностью взаимодействия потоков (расстояние между кумулятивными зарядами потоки преодолевают за доли микросекунды). Импульс получается не только при взаимодействии неоднородного магнитного поля с положительно и отрицательно заряженными частицами, движущимися с большой кинетической энергией, от соударений с элементами магнитной жидкости, металлическими микромагнитами, но и между собой. Ионная бомбардировка возбуждает взаимосвязанные процессы. Основные – объемное и поверхностное рассеяние бомбардирующих ионов (в том числе и с изменением их зарядового состояния), эмиссия из различных конденсированных сред заряженных и нейтральных частиц и их комплексов (ионно-ионная, ионно-электронная, распыление), испускание электромагнитного излучения с широким спектром частот, ионно-люминесценция, ионно-фотонная эмиссия.

Принципиальная схема РЭБ-боеголовки.
Источник: medium.com

Первый этап – элементарный акт столкновения иона с атомом другого тела, результатом которого является перераспределение энергии и импульса бомбардирующего иона между рассеянным ионом и атомом мишени. Это приводит к возникновению протяженных последовательных и каскадов атомных столкновений, а также процессов, сопровождающих перестройку электронных оболочек партнеров соударения, что и обусловливает совокупность вторичных процессов, вызванных ионной бомбардировкой. Энергия быстрой первичной частицы (иона) при бомбардировке поверхности идет на протекание ряда вторичных процессов: часть энергии расходуется на распыление решетки мишени, эмиссию электронов, ионов, фотонов, быстрых нейтральных частиц. Эта энергия выносится из твердого тела, другая часть энергии остается и идет на образование радиационных эффектов, различных электронных и фононных возбуждений решетки, люминесценцию, структурные превращения. При больших значениях энергии сталкивающихся частиц (десятки и сотни эВ) ионно-фотонная эмиссия (ИФЭ) протекает по кинетическому механизму, при возбуждении внешних электронов оболочки выбиваемого атома за счет неупругой передачи энергии при соударении. В зависимости от энергии, сорта налетающего иона, угла бомбардировки и типа мишени возникает одна или несколько групп скоростей отлетающих возбужденных атомов и столько же энергетических порогов возбуждения ИФЭ.

Расчеты показывают, что при относительной скорости (скорость ионов оксида бария относительно встречного магнитного потока) 20 км/с ион оксида бария имеет кинетическую энергию поступательного движения 31,83 эВ, что позволяет возникнуть импульсу ЭМ-излучения широкого спектра, а кинетическая энергия электрона при той же скорости будет равна 18,2х10-23 дж. Тогда верхняя граница излучения, возбужденного таким электроном, составит 2,75х1011 Гц. А это соответствует длине волны излучения порядка одного миллиметра. Процессы, происходящие при приведении в действие предлагаемого устройства, столь многообразны, что учесть и рассчитать все эффекты представляется трудной задачей. Однако простейшие расчеты показывают верность предлагаемого способа и возможность получения нужного эффекта при самых незначительных затратах.

Этот способ и предлагаемое устройство найдут применение и в науке. Например, при радиозондировании в георадарах. В военном деле – для выведения из строя электронных и электротехнических устройств противника. Простота устройства, дешевизна и доступность применяемых и уже освоенных технологий и материалов, возможность доставить ЭМ-боеприпас залпом ствольной артиллерии или ракетным пуском, или силами рядового бойца делают его коварным и опасным оружием.

У РЭБ-боеголовки есть особенность, связанная с достаточной массой заряда ВВ для выполнения функции оболочечного взрывного устройства. Если оболочку изготовить из твердого сегментированного радиопрозрачного материала, то такой боеприпас с успехом сыграет роль и осколочно-фугасного снаряда.

Универсальность и легкость использования в боевой обстановке делает это оружие особенно грозным, поскольку РЭБ-боеголовки будут эффективны и в стрельбе по площадям. Именно это и позволит любому бойцу уничтожать противника и его технику столько раз, сколько ее увидит.

Легко можно представить себе такое «чистое» оружие в виде боеголовок разных ракет и снарядов дальнобойной артиллерии, избивающие электромагнитными импульсами на дальних подступах колонны неприятельской техники, рои дронов, эскадры на море, самолеты и даже вражеские города. А какие новые качества приобретут зенитно-ракетные комплексы! Вне всякого сомнения, нужно разворачивать работы над оружием новой эры в нашей стране.

Шамиль Абдуллаев

Опубликовано в выпуске № 15 (828) за 21 апреля 2020 года

Можно ли защититься?

После первых испытаний ядерного оружия и определения электромагнитного излучения, как одного из его основных поражающих факторов, в СССР и США начали работать над защитой от ЭМИ.

К этому вопросу в СССР подходили очень серьезно. Советская армия готовилась воевать в условиях ядерной войны, поэтому вся боевая техника изготавливалась с учетом возможного воздействия на нее электромагнитных импульсов. Сказать, что защиты от него нет совсем – это явное преувеличение.

Вся военная электроника оборудовалась специальными экранами и надежно заземлялась. В ее состав включались специальные предохранительные устройства, разрабатывалась архитектура электроники максимально устойчивая к ЭМИ.

Конечно, если попасть в эпицентр применения электромагнитной бомбы большой мощности, то защита будет пробита, но на определенном расстоянии от эпицентра, вероятность поражения будет существенно ниже. Электромагнитные волны распространяются во все стороны (как волны на воде) поэтому их сила убывает пропорционально квадрату расстояния.

Кроме защиты, разрабатывались и средства радиоэлектронного поражения. С помощью ЭМИ планировали сбивать крылатые ракеты, есть информация об успешном применении этого метода.

В настоящее время разрабатывают передвижные комплексы, что могут испускать ЭМИ высокой плотности, нарушая работу вражеской электроники на земле и сбивая летательные аппараты.

РЭБ-бомба для переднего края

Задачу подавления радиоэлектронных средств противника можно успешно решить, если рядового бойца вооружить устройством РЭБ со схожими с ручным гранатометом массой и габаритами, заряд которого можно забросить к противнику. Такой же технологичный, дешевый и надежный, как боеприпас для РПГ-7, способный генерировать широкополосный спектр ЭМИ мощностью в десятки киловатт.

Для «выжигания» элементной базы и электросхем можно создать изделие, в котором химическая энергия взрывчатки будет прямо преобразовываться в электромагнитный импульс. Надо лишь воспользоваться научными достижениями последних лет в области конструирования постоянных магнитов, суспензий и жидкостей на их основе. Обратить химэнергию детонирующего взрывчатки в мощный импульс ЭМ-излучения можно за счет создания высокоскоростного относительного движения магнитного поля постоянных магнитов и пучка заряженных частиц легко ионизирующих веществ. И что очень важно для надежности, безотказности, легкости и оперативности применения такого изделия – это отсутствие в его конструкции любых зарядных, аккумулирующих устройств для электрического тока. Именно так, как в «бомбе Сахарова».

Кумулятивный эффект широко используется в военном деле для придания больших скоростей поражающим элементам (ПЭ) – квазижидкой металлической струе, ударному ядру, в технике и горном деле – для разрезания тросов, стержней, дробления скальных пород, бетона. Предлагаемый способ отличен тем, что в кумулятивную полость помещаются вещества и компоненты, которым за счет кумулятивного эффекта (благодаря схлопыванию стенок кумулятивной полости и выдавливания находящегося там вещества) придается большая скорость. Именно в направлении движения групповой скорости фронта детонационных волн заряда ВВ. Скорость вещества, помещенного в кумулятивную полость в виде суспензии из неодимовых микромагнитов, магнитной жидкости МГ-131 или другой магнитной жидкости на силиконовой или иной основе, истекающего в направлении групповой скорости детонационных волн узким пучком, будет величиной такого порядка:

где Vв – скорость истекающего вещества,

Vдв – скорость фронта детонационной волны,

2α – угол вершины кумулятивной воронки.

При скорости фронта детонационной волны Vдв, равной 7–8 км/с, скорость истечения вещества Vв может достигнуть десятков километров в секунду.

Перспективы и принципы

Новые образцы российского оружия на новых физических принципах, не имеющие аналогов в мире, созданы и успешно испытаны прошлой осенью. Такое оружие способно нейтрализовать технику противника без применения традиционных средств поражения. С помощью направленной энергии оно воздействует на высокоточные боеголовки и бортовую аппаратуру самолетов, а также беспилотных аппаратов. Передвижные генераторы электромагнитного излучения (ЭМИ) могут вывести из строя электронику противника на расстоянии в десятки километров.

Парализующие технику противника российские электромагнитные бомбы могут повлиять на методы ведения войны значительнее, чем ядерное оружие. Они позволяют конвенционно нейтрализовать целые армии противника одним коротким импульсом. Заметим: в отличие от средств радиоэлектронного подавления, перспективные разработки способны уничтожить полностью или частично повредить даже отключенную от сети аппаратуру, например бронетехнику и самолеты на стоянке, ракеты в шахтах.

Ранее сообщалось о создании российской ракеты «Алабуга» с генератором электромагнитного поля высокой мощности. Такая ракета может одним ударом «накрыть» территорию в несколько квадратных километров и вывести из строя всю электронику противника.

Радиоэлектронное оружие может дистанционно заклинить автоматику заряжания танка или подорвать снаряд в башне, а также уничтожить живую силу противника внутри укрытия или под землей на глубине до 100 метров. Подобные образцы отечественного ОПК впервые продемонстрировали ограниченному кругу российских специалистов на форуме «Армия-2016».

Электромагнитная бомба для бедных

ГСМП — оружие, на удивление простое. Он состоит, как показано на рисунке сверху, из трубки, начиненной взрывчаткой и помещенной внутри медной обмотки.

За мгновение до детонации химического заряда ток от конденсаторной батареи поступает в обмотку и создает магнитное поле. Детонация заряда распространяется от заднего конца трубки к переднему. Расширяющаяся трубка касается края обмотки и создает движущееся короткое замыкание. Движущееся замыкание сжимает магнитное поле и в то же время уменьшает индуктивность обмотки статора.

В результате ГСМП создает быстрорастущий импульс тока, который обрывается до окончательного разрушения устройства. Согласно опубликованным результатам, время роста составляет десятки или сотни микросекунд, а пиковое значение силы тока — десятки миллионов ампер. По сравнению с получающимся импульсом разряд молнии выглядит как фотовспышка.

Единственная защита против такой бомбы — клетка Фарадея (КФ).

Электромагнитная бомба

Как вы представляете себе начало Третьей мировой войны? Ослепительные вспышки термоядерных зарядов? Стоны людей, умирающих от сибирской язвы? Удары гиперзвуковых летательных аппаратов из космоса?

Все может быть совсем по-другому.

Вспышка действительно будет, но не очень сильная и не испепеляющая, а похожая, скорее, на раскат грома. Самое «интересное» начнется потом.

Загорятся даже выключенные люминесцентные лампы и экраны телевизоров, в воздухе повиснет запах озона, а проводка и электрические приборы начнут тлеть и искриться. Гаджеты и бытовые приборы, в которых есть аккумуляторы, нагреются и выйдут из строя.

Перестанут работать практически все двигатели внутреннего сгорания. Отключится связь, не будут работать средства массовой информации, города погрузятся во тьму.

Люди не пострадают, в этом отношении электромагнитная бомба – очень гуманный вид оружия. Однако подумайте сами, во что превратится жизнь современного человека, если убрать из него устройства, принцип действия которых основан на электричестве.

Общество, против которого будет применено орудие подобного действия, окажется отброшенным на несколько веков назад.

Оружие будущего – боеголовки РЭБ

Появятся ли в ВС РФ артиллерийские снаряды и ракеты с БЧ для ведения радиоэлектронной борьбы?

Современная война – царство электроники, информационных беспроводных сетей, роев умных беспилотных разведчиков и ударных БЛА. Хорошо бы уничтожать вражеские системы такого рода мощнейшими ЭМИ – электромагнитными импульсами. Но как? Ставить стационарные излучатели на передовой – сжечь свою электронику. Взрывать над позициями врага или среди роев его дронов ядерные заряды с ЭМИ? Опасно, да и не любая война должна перерастать в атомную бойню.

Возможен и другой путь: бить врага вроде бы обычными боеголовками ракет и снарядов, которые силу своих взрывов превращают в разящие электромагнитные импульсы.

«Бомба Сахарова» для радиоэлектронной борьбы

Для борьбы с роями легких дронов и беспилотными авиационными платформами созданы боеголовки с осколочными и с готовыми поражающими элементами (ГПЭ). Осколки и ГПЭ поражают технику противника, находящуюся в пределах видимости. Но это не всегда возможно сделать, особенно если БЛА «прячется» в укрытии или за ограждающими конструкциями. Зато такими средствами, которым доступны для поражения и видимые, и укрытые технические средства противника (в том числе и боеприпасы с электронными и электрическими детонаторами), выступают средства радиоэлектронной борьбы.

Радиоэлектронная борьба (РЭБ) – это совокупность согласованных мероприятий и действий по:

    радиоэлектронному поражению радиоэлектронных объектов противника (функциональное поражение, радиоэлектронное поражение, поражение самонаводящимся на излучение оружием);

информационному обеспечению (сбор, анализ и обобщение данных о радиоэлектронной обстановке, техническая разведка радиоэлектронных объектов противника, комплексный технический контроль состояния и защиты от технических средств разведки своих объектов);

радиоэлектронной защите (защита от средств электромагнитного поражения, защита от непреднамеренных помех (обеспечение электромагнитной совместимости), защита войск и объектов от технических средств разведки).

“Боеголовка для радиоэлектронной борьбы станет надежным средством поражения ЭМ-импульсами высокотехнологичного оружия противника”

С учетом состояния техники РЭБ, выпускаемой для Минобороны РФ, принято говорить об интегрированных системах РЭБ, объединяющих около 50 комплексов и средств различного назначения. («Научные принципы РЭБ», «Коммерсантъ-Наука», № 1, 2017).

Можно найти данные о технических и массогабаритных характеристиках всех видов средств РЭБ РФ и перечень компаний, их выпускающих. Но нигде не говорится об одном замечательном устройстве для радиоэлектронной борьбы – «бомбе Сахарова», преобразующей мощный постоянный ток от аккумуляторных батарей в электромагнитное излучение за счет энергии взрывчатого вещества. Пока применять это устройство в боевых условиях не позволяют вес в сотни килограммов, продолжительность подготовки к использованию, опасность применения на переднем крае из-за «дружественного огня». Кроме того, на передовую бомбу для РЭБ противника можно доставить авиацией.

РЭБ-бомба довольно эффективно преобразовывает энергию ВВ в поражающий фактор электромагнитного излучения, тем самым губительным образом воздействует на элементную базу и цепи электронных приборов и устройств. Модули РЭБ – мощные генераторы электромагнитного излучения (ЭМИ) внушительных габаритов смонтированы на различных носителях (наземных, водных, воздушных) – в ВС РФ имеются. Наведенная ими ЭДС замыкает электрические цепи, выжигает элементную базу, выводит из строя зарядные устройства, батареи, аккумуляторы и дисплеи любых гаджетов (дисплеи уж точно не защитить никакими клетками Фарадея), что делает противника глухим и слепым. Но удобным такое оружие не назовешь, поскольку есть весьма существенный недостаток: их нельзя применить на переднем крае без риска моментальной потери средств РЭБ. Да и вдали от передка, перед тем как применить генераторы ЭМИ, нужно крепко подумать: из-за активного излучения, по лучу которого наверняка прилетят в ответ боеприпасы с ГСН.

РЭБ-бомба для переднего края

Задачу подавления радиоэлектронных средств противника можно успешно решить, если рядового бойца вооружить устройством РЭБ со схожими с ручным гранатометом массой и габаритами, заряд которого можно забросить к противнику. Такой же технологичный, дешевый и надежный, как боеприпас для РПГ-7, способный генерировать широкополосный спектр ЭМИ мощностью в десятки киловатт.

Для «выжигания» элементной базы и электросхем можно создать изделие, в котором химическая энергия взрывчатки будет прямо преобразовываться в электромагнитный импульс. Надо лишь воспользоваться научными достижениями последних лет в области конструирования постоянных магнитов, суспензий и жидкостей на их основе. Обратить химэнергию детонирующего взрывчатки в мощный импульс ЭМ-излучения можно за счет создания высокоскоростного относительного движения магнитного поля постоянных магнитов и пучка заряженных частиц легко ионизирующих веществ. И что очень важно для надежности, безотказности, легкости и оперативности применения такого изделия – это отсутствие в его конструкции любых зарядных, аккумулирующих устройств для электрического тока. Именно так, как в «бомбе Сахарова».

Кумулятивный эффект широко используется в военном деле для придания больших скоростей поражающим элементам (ПЭ) – квазижидкой металлической струе, ударному ядру, в технике и горном деле – для разрезания тросов, стержней, дробления скальных пород, бетона. Предлагаемый способ отличен тем, что в кумулятивную полость помещаются вещества и компоненты, которым за счет кумулятивного эффекта (благодаря схлопыванию стенок кумулятивной полости и выдавливания находящегося там вещества) придается большая скорость. Именно в направлении движения групповой скорости фронта детонационных волн заряда ВВ. Скорость вещества, помещенного в кумулятивную полость в виде суспензии из неодимовых микромагнитов, магнитной жидкости МГ-131 или другой магнитной жидкости на силиконовой или иной основе, истекающего в направлении групповой скорости детонационных волн узким пучком, будет величиной такого порядка:

где Vв – скорость истекающего вещества,

Vдв – скорость фронта детонационной волны,

2α – угол вершины кумулятивной воронки.

При скорости фронта детонационной волны Vдв, равной 7–8 км/с, скорость истечения вещества Vв может достигнуть десятков километров в секунду.

Взрывные суспензии

Кумулятивный эффект можно использовать для создания потока ионизированных частиц с большой кинетической энергией и механического перемещения магнитного поля магнитной жидкости навстречу потоку заряженных частиц. Зачем? Чтобы получить мощный кратковременный импульс ЭМ-излучения широкого спектра. Забегая вперед, скажу: можно создать заряды, уничтожающие врага и мощными ЭМИ, и как обычные «разрывные» боеприпасы.

Нужное для этого устройство может состоять из двух кумулятивных полостей, в которых находятся ускоряемые вещества, установленные на расстоянии порядка длины кумулятивной струи в 10–15 см вдоль одной оси. Причем полости направлены навстречу друг другу. В одну помещается суспензия неодимовых микромагнитов или магнитная жидкость с сильной намагниченностью. Например, МГ-131 – коллоидный раствор нанометровых твердотельных ферромагнитов. В другой – легкоионизируемое вещество, такое, как оксид бария, ВаО. При одновременном подрыве зарядов навстречу друг другу устремляются магнитное поле суспензии неодимовых микромагнитов или магнитной жидкости и поток ионов и электронов, образованные вследствие термической ионизации оксида бария, с относительной скоростью более 20 км/с, что и порождает мощный электромагнитный импульс, аналогичный магнетронному излучению.

Мощность обусловлена кратковременностью взаимодействия потоков (расстояние между кумулятивными зарядами потоки преодолевают за доли микросекунды). Импульс получается не только при взаимодействии неоднородного магнитного поля с положительно и отрицательно заряженными частицами, движущимися с большой кинетической энергией, от соударений с элементами магнитной жидкости, металлическими микромагнитами, но и между собой. Ионная бомбардировка возбуждает взаимосвязанные процессы. Основные – объемное и поверхностное рассеяние бомбардирующих ионов (в том числе и с изменением их зарядового состояния), эмиссия из различных конденсированных сред заряженных и нейтральных частиц и их комплексов (ионно-ионная, ионно-электронная, распыление), испускание электромагнитного излучения с широким спектром частот, ионно-люминесценция, ионно-фотонная эмиссия.

Принципиальная схема РЭБ-боеголовки.
Источник: medium.com

Первый этап – элементарный акт столкновения иона с атомом другого тела, результатом которого является перераспределение энергии и импульса бомбардирующего иона между рассеянным ионом и атомом мишени. Это приводит к возникновению протяженных последовательных и каскадов атомных столкновений, а также процессов, сопровождающих перестройку электронных оболочек партнеров соударения, что и обусловливает совокупность вторичных процессов, вызванных ионной бомбардировкой. Энергия быстрой первичной частицы (иона) при бомбардировке поверхности идет на протекание ряда вторичных процессов: часть энергии расходуется на распыление решетки мишени, эмиссию электронов, ионов, фотонов, быстрых нейтральных частиц. Эта энергия выносится из твердого тела, другая часть энергии остается и идет на образование радиационных эффектов, различных электронных и фононных возбуждений решетки, люминесценцию, структурные превращения. При больших значениях энергии сталкивающихся частиц (десятки и сотни эВ) ионно-фотонная эмиссия (ИФЭ) протекает по кинетическому механизму, при возбуждении внешних электронов оболочки выбиваемого атома за счет неупругой передачи энергии при соударении. В зависимости от энергии, сорта налетающего иона, угла бомбардировки и типа мишени возникает одна или несколько групп скоростей отлетающих возбужденных атомов и столько же энергетических порогов возбуждения ИФЭ.

Расчеты показывают, что при относительной скорости (скорость ионов оксида бария относительно встречного магнитного потока) 20 км/с ион оксида бария имеет кинетическую энергию поступательного движения 31,83 эВ, что позволяет возникнуть импульсу ЭМ-излучения широкого спектра, а кинетическая энергия электрона при той же скорости будет равна 18,2х10-23 дж. Тогда верхняя граница излучения, возбужденного таким электроном, составит 2,75х1011 Гц. А это соответствует длине волны излучения порядка одного миллиметра. Процессы, происходящие при приведении в действие предлагаемого устройства, столь многообразны, что учесть и рассчитать все эффекты представляется трудной задачей. Однако простейшие расчеты показывают верность предлагаемого способа и возможность получения нужного эффекта при самых незначительных затратах.

Этот способ и предлагаемое устройство найдут применение и в науке. Например, при радиозондировании в георадарах. В военном деле – для выведения из строя электронных и электротехнических устройств противника. Простота устройства, дешевизна и доступность применяемых и уже освоенных технологий и материалов, возможность доставить ЭМ-боеприпас залпом ствольной артиллерии или ракетным пуском, или силами рядового бойца делают его коварным и опасным оружием.

У РЭБ-боеголовки есть особенность, связанная с достаточной массой заряда ВВ для выполнения функции оболочечного взрывного устройства. Если оболочку изготовить из твердого сегментированного радиопрозрачного материала, то такой боеприпас с успехом сыграет роль и осколочно-фугасного снаряда.

Универсальность и легкость использования в боевой обстановке делает это оружие особенно грозным, поскольку РЭБ-боеголовки будут эффективны и в стрельбе по площадям. Именно это и позволит любому бойцу уничтожать противника и его технику столько раз, сколько ее увидит.

Легко можно представить себе такое «чистое» оружие в виде боеголовок разных ракет и снарядов дальнобойной артиллерии, избивающие электромагнитными импульсами на дальних подступах колонны неприятельской техники, рои дронов, эскадры на море, самолеты и даже вражеские города. А какие новые качества приобретут зенитно-ракетные комплексы! Вне всякого сомнения, нужно разворачивать работы над оружием новой эры в нашей стране.

Шамиль Абдуллаев

Опубликовано в выпуске № 15 (828) за 21 апреля 2020 года

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector